2D NMR in structural studies of natural compounds

(O-antigen of Citrobacter freundii O22)

Experiments

¹ H 1D NMR	proton spectrum - general information
¹ H HD diff	selective homonuclear decoupling - revealing of signals of neighboring protons
¹³ C, ³¹ P, BB	broad-band proton decoupled spectra - additional information, "fingerprint", substitution positions
¹³ C DEPT, APT, ¹⁵ N INEPT	edited selective polarization transfer - revealing carbon and nitrogen protonation and sensitivity gain
¹³ C Gated	undecoupled carbon spectrum - heteronuclear coupling constants measurement
¹ H NOE diff	nuclear Overhauser effect measurement - proton-proton spatial contacts

COSY, COSY-45	homonuclear spin correlation - proton spectrum assignment
COSY n-RCT	relayed coherence transfer in COSY - proton spectrum assignment
DQF COSY	double quantum filtered COSY - assignment of proximal signals
TOCSY	total homonuclear correlation - distinguishing of proton spin systems
NOESY, ROESY	homonuclear spatial correlation - revealing of residue sequence and conformation studies
DOSY	diffusion ordered spectroscopy - separation of a spectrum into component subspectra

¹ H, ¹³ C HSQC	proton-carbon spin correlation - carbon spectrum assignment
¹ H, ³¹ P HSQC	proton-phosphorus spin correlation - phosphate groups localization
¹ H, ¹³ C HMBC, ¹ H, ¹⁵ N HMBC	multiple-bond heteronuclear spin correlation - revealing modifier attachment pattern and residue sequence
HSQC Relay	relayed heteronuclear spin correlation - tracking neighboring carbons
HSQC-TOCSY	total heteronuclear correlation - distinguishing of residue spin systems

	C-1	C-2	C-3	C-4	C-5	C-6
α-Rhap	103.3	71.9	70.6	83.0	69.4	18.6
α- <mark>3,6ddXylp</mark>	102.0	64.8	34.4	69.7	68.3	17.0
α- Galp	102.8	69.4	78.6	70.5	72.9	62.5
α- Manp	101.1	80.9	79.0	67.7	74.8	62.0
	C-1	C-2	C-3	C-4	C-5	C-6
\rightarrow 4) α -Rhap	8.1	-0.2	-0.7	9.5	-0.1	0.6
α-3,6ddXylp	9.3	0.7	0.2	0.3	1.0	0.4
\rightarrow 3) α -Galp	9.3	-0.2	8.2	-0.1	1.2	0.1
$\rightarrow 2,3)\alpha$ -Manp	5.8	9.4	7.5	-0.5	0.6	-0.3

NMR¹³CBB

Absolute configurations

	C-1	C-2	C-3	C-4	C-5	C-6
→4)α- Rhap	8.1	-0.2	-0.7	9.5	-0.1	0.6
α-3,6ddXylp	9.3	0.7	0.2	0.3	1.0	0.4
\rightarrow 3) α -Galp	9.3	-0.2	8.2	-0.1	1.2	0.1
$\rightarrow 2,3)\alpha$ -Manp	5.8	9.4	7.5	-0.5	0.6	-0.3

residue pair	carbon	The	eory	Experiment
		DD	DL	
Man→4α Rha	C-4	7.6	9.2	9.5
Rha→3α Gal	C-3	3.9	8.1	8.5
Gal→2αMan	C-2	9.7	6.0	9.4
Abe→3αMan	C-3	7.4	5.5	7.5

Gal is D (from enzymatic oxidation) => Rha is L => Man is D => 3,6ddXyl is D (=Abequose)

Elucidated repeating unit

Details

The ¹³C spectrum of polysaccharide demonstrated a regular structure. It contained signals for four sugar residues, including those for four anomeric carbons at 103.3, 102.8, 101.9 and 101.1, two unsubstituted CH₂OH groups, 15 oxygen-bearing sugar-ring carbons in the region 64-82, one CCH₂C group at 34.4 and two CH₃ groups at 18.6 and 17.0. Accordingly, the ¹H NMR spectrum contained signals for four anomeric protons at 5.34, 5.18, 5.10 and 5.06, signals of sugar-ring protons in region 3.5-4.2, one signal of a C-CH₂-C group at 2.00 and signals of two CH₃ groups at 1.34 and 1.19. As judged by the absence of signals within ∂ 82-88 region, all sugar residues are in pyranose form [1].

The sugar analysis of the polysaccharide revealed residues of Rha, Man and Gal residues in the ratio ~1:1:1 and showed the presence of one more sugar, which has not been identified.

The ¹H and ¹³C spectra of the polysaccharide were assigned using {¹H, ¹H} COSY, TOCSY, ROESY, {¹H, ¹³C} HSQC, {¹H, ¹³C} HSQC-TOCSY and {¹H, ¹³C} HMBC experiments (Tables 1 and 2). The spin system of Rhap was distinguished basing on TOCSY spectrum that showed correlations of Rhap H-6 (1.34) with all the other protons of Rhap. The Rhap ¹H signal assignment was completed by the COSY spectrum, which contained all correlations between neighboring protons in this residue. The assignment of Rhap ¹³C signals was performed using the data of {¹H, ¹³C} HSQC experiment and confirmed by {¹H, ¹³C} HSQC-TOCSY, which revealed the correlations of Rhap H-2 with all carbons of the residue. The chemical shift for Rhap C-5 (69.4) indicated that this residue was in a-anomeric configuration [2]. The significant downfield displacement of Rhap C-4 signal (from 73.5 to 83.0) determined the substitution position as C-4.

The signal at 2.00 in the proton spectrum indicated the presence of a sugar deoxygenated at one of ring carbons. The further investigation (see below) identified this residue as 3,6-dideoxysugar (*3d6dHex*). The signals for protons from H-2 to H-4 were assigned using the COSY spectrum, which showed all correlations between neighboring protons in this residue. However, as judged by {¹H, ¹³C} HSQC experiment, the signal for *3d6dHex* H-4 at 3.88 possessed a complete overlap with the signals of protons corresponding to ¹³C signals at 62.0 and 67.7. Due to this, data of COSY experiment could not be used for unambiguous assignment of the signal for *3d6dHex* H-5.

The ¹³C signals from C-1 to C-4 were assigned using the data of { 1 H, 13 C} HSQC experiment. Due to the strong overlap of *3d6dHex* H-2 (with the signals of protons linked to carbons with chemical shifts 79.0 and 74.8) and H-4 signals (see above) in ¹H NMR spectrum at 4.04 and 3.88, respectively, assignment of signals for C-2 and C-4 was not clearly determined from { 1 H, 13 C} HSQC data and required data of { 1 H, 13 C} HSQC-TOCSY experiment, which contained H-1/C-2 and H-1/C-4 correlations at 5.11/64.8 and 5.11/69.7, respectively. The signal for *3d6dHex* H-5 was assigned basing on *intra*-residue C-4/H-5 correlation in HMBC spectrum at 69.7/4.12, and the H-5/H-6 correlation in COSY spectrum at 4.12/1.19 allowed to assign the signal for *3d6dHex* H-6. The signals for C-5 and C-6 were assigned using the data of { 1 H, 13 C} HSQC experiment.

The spin system of 3d6dHex was distinguished basing on upfield chemical shifts of H-3 (2.00) and H-6 (1.19). The ¹³C chemical shifts of 3d6dHex appeared to be characteristic for the terminal 3,6-dideoxy-a-xylohexopyranoside [3].

The ¹H and ¹³C NMR signals for *Hex-II* residue (Gal*p* or Man*p*, accordingly to the sugar analysis, H-1 at 5.34) were assigned using the data of COSY, {¹H, ¹³C} HSQC, and {¹H, ¹³C} HMBC experiments. The signal for *Hex-II* H-2 was assigned basing on H-1/H-2 correlation at 4.04/5.11 in COSY spectrum. As there were no H-2/H-3 and H-3/H-4 correlations observed in COSY, the signals for H-3 and H-5 were assigned using the data of {¹H, ¹³C} HSQC and {¹H, ¹³C} HMBC experiments. Particularly, the HMBC spectrum demonstrated the *intra*-residue H-1/C-5, H-1/C-3 and H-2/C-3 correlations at 5.34/74.8, 5.34/79.0 and 4.02/79.0, respectively, and allowed the assignment of C-3 and C-5 signals. The H-1/H-2 coupling constant <2 Hz revealed from ¹H NMR spectrum showed that *Hex-II* could not be the b-Gal*p* residue. The chemical shift for *Hex-II* C-5 was 74.8, while chemical shifts for C-5 of unsubstituted a-Gal*p*, a-Man*p* and a-Man*p* are 71.7, 74.2 and 77.4, respectively [2]. These data indicated that *Hex-II* had the a-*manno*-configuration, as the b-glycosilation effects of substitution at Gal*p* C-4 or C-6 or Man*p* do not exceed 1.8, and thus could not explain the observed chemical shift in all the other cases [4].

The signals for Manp H-3, H-4, H-5 and C-6 were assigned basing on correlations with corresponding atoms in the $\{^{1}H, ^{13}C\}$ HSQC spectrum. H-6a and H-6b signal assignment followed from H-5/H-6a and H-5/H-6b correlations in the COSY spectrum observed at 3.98/3.87 and 3.98/3.82, respectively. The assignment of Manp C-4 was done using the characteristic chemical shift (67.7) of Manp C-4 [2], and H-2/C-4 cross-peak at 67.7/4.02 in the $\{^{1}H, ^{13}C\}$ HMBC spectrum. The significant downfield displacement of the signals for Manp C-2 (from 71.5 to 83.0) and C-3 (from 71.5 to 79.0), as compared to the signals in unsubstituted residue [2], revealed that this residue was bisubstituted at C-2 and C-3.

The TOCSY spectrum showed the correlations of H-1 of the remaining Gal*p* with protons from Gal*p* H-2 to H-4. Together with COSY data, this allowed the assignment of Gal*p* H-2, H-3 and H-4. Due to the absence of H-4/H-5 correlation in COSY, further assignment required the data of $\{^{1}H, ^{13}C\}$ HSQC and HMBC experiments. Particularly, HMBC spectrum showed the H-1/C-5 correlation at 5.18/72.9 and the HSQC spectrum showed the C-5/H-5 correlation at 72.9/4.10. The signals of H-6a and H-6b were assigned basing on H-5/H6a and H-5/H6b correlations in COSY. The H-1/H-2 coupling constant <2Hz demonstrated the a-configuration of the residue. The Gal*p* ^{13}C signals except C-5 were assigned using the data of $\{^{1}H, ^{13}C\}$ HSQC experiment. The significant downfield displacement of Gal*p* C-3 signal (from 70.4 in the unsubstituted residue to 78.6) demonstrated the substitution at C-3.

The HMBC spectrum showed the following inter-residue cross-peaks: Rhap H-1 / Galp C-3 at 5.06/78.6; 3d6dHex H-1 / Man C-3 at 5.11/79.0; Galp C-1 / Manp H-2 at 102.8/4.02; Manp H-1 / Rhap C-4 at 5.34/83.0. This confirmed the substitution pattern and revealed the sequence of residues.

The absolute configuration of Galp was determined as D using the enzymatic oxidation method as described [5]. Taking the configuration of this residue as reference, glycosilation effect analysis was performed using the BIOPSEL database [4]. The comparison of the observed -glycosilation effects with the theoretical ones showed the following interrelations between possible absolute configurations of residues:

Galp(12)Manp D,D-pair (observed effect: +9.5, theoretical: DD +9.7, DL +6.0); Rhap(13)Galp D,L-pair (observed effect: +8.2, theoretical: DD +3.9, DL +8.1); Manp(14)Rhap D,L-pair (observed effect: +9.5, theoretical: DD +7.6, DL +9.2); 3d6dHex(13)Manp D,D-pair (observed effect: +7.5, theoretical: DD +7.4, DL +5.5).

These data revealed the absolute configuration of all other residues but Galp: D for Man, L for Rha and D for 3,6-deoxy-xylohexopyranoside. 3,6-deoxy-D-xylohexopyranose is called "abequose". Thus the structure of repeating unit was elucidated as following [slide 11].

Tabular data

¹HNMR data (ppm) for the O-specific polysaccharide of *Citrobacter* PCM 1555

	H-1	H-2	H-3	H-4	H-5	H-6a	H-6b
-Abe(1-	5.11	4.04	2.00	3.88	4.12	1.19	
2,3)-D-Man <i>p</i> (1	5.34	4.02	4.05	3.87	~3.98	3.87	3.82
4)-L-Rha <i>p</i> (1	5.06	4.07	~3.98	3.56	3.94	1.34	
3)-D-Gal <i>p</i> (1	5.18	3.92	~3.95	5 4.07	4.10	3.75	3.69

¹³C NMR data (ppm) for the O-specific polysaccharide of *Citrobacter* PCM 1555

	C-1	C-2	C-3	C-4	C-5	C-6
-Abe(1-	102.0	64.8	34.4	69.7	68.3	17.0
2,3)-D-Man <i>p</i> (1	101.1	81.0	79.0	67.7	74.8	62.0
4)-L-Rha <i>p</i> (1	103.3	71.9	70.6	83.0	69.4	18.6
3)-D-Gal <i>p</i> (1	102.8	69.4	78.6	70.5	72.9	62.5

Referenced from "details":

1. Bock K, Redersen C. Adv Carbohydr Chem Biochem, 1983, 41, 27-66.

2. Lipkind GM, Shaskov AS, Knirel YA, Vinogradov EV, Kochetkov NK. Carbohydr Res, 1988, 175, 59-75.

3. Bundle DR, Josephson S. Can J Chem, 1978, 56, 2686-2690.

4. Toukach FV, Shashkov AS. Carbohydr Res, 2001, 335(2), 101-114.

5. Roth H, Segal S, Bertoli D. Anal Biochem, 1965, **10**, 35-52.

THIS WORK:

Katzenellenbogen E, Kocharova NA, Toukach FV, Górska S, Korzeniowska-Kowal A, Bogulska M, Gamian A, Knirel YA "Structure of an abequose-containing O-polysaccharide from *Citrobacter freundii* O22 strain PCM 1555", *Carbohydr Res*, 2009, **344**(13), 1724-1728.