

F.V. Toukach

Methods of 1D and 2D NMR in structural elucidation of natural glycopolymers

Choice of the demo material

In genomics and proteomics primary structure elucidation is more automatized

In glycomics:

- greater chemical variativity (especially for bacterial carbohydrates)
- structure elucidation is not algorhythmic
- tertiary structure (=>biological properties) is more dependent on the *primary* structure

Polysaccharides of the Gram-negative bacterial outer membrane are antigenic

knowledge of structure => serological classification, vaccines

Edwadrsiella tarda (strain 1153)

(Gram-negative enterobacteria of marine animals and reptiles, sometimes causes gastroenteritis)

Carbohydrate structure

COMPLETE STRUCTURE

- structure of all residues, including non-sugars (aminoacids, aliphatic acids, etc.)
- substitution positions
- sequence of residues
- stoichiometry of residues
- phosphate and sulphate linkers
- number of repeating units and "frame positioning"

D-Gal

aldo-monosaccharide in pyranose form (example)

RESIDUE STRUCTURE

- carbon skeleton size (5-9)
- cycle size (pyranose, furanose, linear)
- spatial orientation of all -OH (ax/eq)
- anomeric configuration (α/β)
- absolute configuration (D/L)
- · -H instead of -OH (deoxy-)
- -Nh₂ instead of -OH (amino-)
- -COOH instead of -CH₂OH (uronic acids)
- other functional groups

aldo-monosaccharide in furanose form (example)

1D NMR spectrum

signal position

- distribution of electronic density

signal shape

- number of type of neighboring atoms

signal square

- number of equivalent atoms

2D NMR spectrum (correlation)

cross-peaks

- signal interactions

(spin coupling is via chemical bonds, NOE is via space)

Non-correlational NMR experiments

ΊΗ	1D proton spectrum - measurement of homonuclear spin coupling constants, general information, residue identification, basis for carbon spectrum assignment
¹³ C BB	1D carbon spectrum with broad band proton decoupling - detailed information, residue identification, substitution positions
³¹ P BB, ¹⁵ N BB	other 1D spectra with broad band proton decoupling - additional information
APT, DEPT	edited carbon spectrum - assignment of CH2-groups
¹³ C Gated, ³¹ P Gated	1D spectra without broad band decoupling - measurement of homonuclear spin coupling constants, elucidation of anomeric configuration, conformation studies
HH J-res	proton signals swept on multiplicity - measurement of homonuclear spin coupling constants, general information, residue identification
DOSY	proton spectrum swept on molecule correlation time - separation of spectra into subspectra of components or of molecular parts that differ in mobility

spectra interpretation is not algorhythmistic

Homonuclear correlations

COSY	spin correlation between vicinal protons - proton spectrum assignment
RCT, RCT2	spin correlation with polarization transfer along vicinal proton pairs - proton spectrum assignment
DQF COSY	COSY without a diagonal line - assignment of proximal signals
¹ H HD dif	differential selective decoupling - H2 line shape analysis
ТОСЅҮ (НОНАНА)	spin correlation with all protons in the spin system - spin system distinguishing
1D TOCSY	TOCSY for a single signal - extraction of a residue spin system
NOESY, ROESY	spatial correlation - determination of the residue sequence, conformational studies
¹ H NOE dif	differential selective NOE measurement - spatial contact studies

Heteronuclear correlations

{ ¹ H, ¹³ C} HSQC	direct proton-carbon spin correlation - carbon spectrum assignment
{ ¹ H, ³¹ P} HSQC	proton-phosphorus spin correlation - localization of phospate groups
{ ¹ H, ¹³ C} HMBC	long-range proton-carbon spin correlation - determination of the residue sequence
{ ¹ H,X} 1D HMBC	HMBC for a single signal - assignment of protons around a certain heteroatom
HSQC-Relay	carbon-carbon correlation via spin coupling of their vicinal protons - поиск соседних углеродных атомов
HSQC-TOCSY	correlation of carbons with all protons in the spin system (and vice versa) - assignment of <i>C5 using H6, and similar problems</i>
{ ¹ H,X} 1D NOE	measurement of heteronuclear NOE - conformational studies

Approximate research schema

Source data

O-antigenic polysaccharide was extracted from the LPS of *Edwardsiella* 1153 bacteial cell wall The ¹³C NMR spectrum displayed regularity after the sample de-O-acetylation.

GLC (Sugar analyzer): at least GIcN, Gal, GalA are present in the unknown proportion

Edwardsiella 1553 35 mg in D **DRX 500** Bruker AVANCE DMX BRUKER

TOCSY

Substitution positions and anomeric configurations

ROESY

shows proton spatial contacts (Nuclear Overhauser Effects)

GlcN(1→4)GalA

GalA(1→3)GlcN

Gal(1→3 или 4)GalA

GalA(1→4 или 6)Gal

choice is based on substitution positions (HSQC);

confirmation: HMBC

inter-residue contacts

Absolute configurations

substitution effects are sensitive to absolute configurations and are deposited in the databases

	C1	C2	C 3	C4	C5	C6
→3)-α-GalpA'-(1→	102.0 +7.2	68.1	75.8 +5.4	67.7 <i>-4.0</i>	72.6	175.0
\rightarrow 3)- β -GlcpN-(1 \rightarrow	103.3 +7 <i>.1</i>	56.0 <i>-2.0</i>	83.5 +8.4	72.6 +1.4	76.4	62.8
Ac-(1→2)	176.1	23.8				
\rightarrow 4)- α -Gal p A"-(1 \rightarrow	101.4 +6.6	70.1	70.5	78.7 +7.0	73.0 + <i>0.8</i>	172.8
GroN-(2→6)	62.0	54.2	62.0			
\rightarrow 4)- α -Gal p -(1 \rightarrow	97.1 +3.6	69.6	70.1	79.0 +8.4	72.9 +1.2	61.6

both GalA are D (from the values of optical rotation of their S-butylglycosides)

residue pair	atom	database	experiment	
		DD DL		
<mark>Gal</mark> α1→3GalA [′]	C-1	3.3 8.3	3.6	
<mark>GalA</mark> 'β1→3 GIcN	C-4	0.7 -1.3	1.4	

all chiral residues have D-configuration

Sources of ¹³C chemical shift data

BCSDB: experimental NMR data

BCSDB/BIOPSEL:

¹³C chemical shifts of monomers, dimers (linear fragments), and trimers (branching points). substitution effects. http://www.glyco.ac.ru/bcsdb3/nmr.html

Example cases when incremental calculation is demanded:

Structure of the chemical repeating unit of Edwardsiella 1153

HSQC => in the native polysaccharide Gal is O-acetylated at position 2 (45% of units) or 3 (other 45% of units)

