Some useful
pulse sequences
N.D. Zelinsky Institute of Organic
Chemistry,
Russian Academy of Sciences
Full acquisition is directed into different memory blocks.
Size of SER-file must not be larger than MAXMemory parameter.
Minimal
number of scans NS=2; dummy scans DS=0; RGA is
incorporated into pulse program
(c) Yu. Strelenko, 1991
ST0 ;set first block, size = TD 1 ZE ;zeroing this block ST ;set next block LO TO 1 TIMES X ;loop zeroing through all blocks of memory 2 D1 ;start of RGA P1 ;RGA instead of DS RGA=2 ;finish of RGA ZE ;zeroing first block after RGA 3 D1 ;start COSY pulse program, relaxation delay 4 P1 PH1 ;90-pulse D0 ;incrementable T1 delay P2 PH2 ;90- to 45-pulse GO=3 PH3 ;AQ into first block of memory ST ;increment number of memory block IN=3 ;increment T1(D0), go to next FID ST0 ;reset to first memory block 5 WR CO.SER ;write FID into SER-file IF CO.SER ;increment file number ST ;increment memory block number LO TO 5 TIMES X ;and write all FIDs XF2 CO.SER XF1 CO.SMX EXIT ;finish COSY experiment PH1=A0 A0 A1 A1 A2 A2 A3 A3 PH2=A0 A1 A3 A2 A1 A2 A0 A3 PH3=R0 R2 R1 R3 ;Program requests filename with .SER extention ;NE defines the number of FIDs = TD1 ;Use NS = 2,4 or 8 (complete phase cycle) ;RD = PW = DS = 0 !!! ;D1 = 1-5*T1 ;P1 = 90 degrees ;P2 = 90 degrees for maximum sensitivity ; = 45 degrees for minimal diagonal (good for tight AB systems) ; and 'tilted' correl. peaks (signs of couplings). ;D0 = 3u or better = IN/2 (initial delay) ;IN = 0.5/SW1 = 2*DW, SW1 = SW/2 ;ND0 = 1, I2D = 1 ;ST0 = NE = NBL (Number BLocks of memory) ;Choose SW and SI so that HZ/PT = ca. 2-6 Hz ;Typically use TD = SI, no zero-filling in F2 ; NBL= NE = SI/4, zero-fill in F1 ;Matrix can be symmetrized about diagonal
NOEFAST.au
(fast
1D NOE difference spectroscopy)
modified by Yu. Strelenko, 1996
; USING ONE FREQ. LIST TO DEFINE A SERIES OF IRRADIATION POINTS ; (ON-RESONANCE) AND ONE CONTROL (OFF-RESONANCE) ; Fixed names of files: ; N.001-N.999 for FIDs ; F.001-F.999 for Fourier transformed spectra ; FQLIST.001 for friequency list ST0 ;set first block, size = TD 1 ZE ;zeroing this block ST ;set next block LO TO 1 TIMES C ;loop zeroing through all blocks of memory ;PREPARE A SET OF ZEROED FILES ON memory 7 D3 O2 S3 ;SET DEC. FREQ. O2 FROM CURRENT FL LIST 8 D1 DO ;RELAX. TIME WITH DEC. GATED OFF 9 D2 HG ;IRRAD. TIME (CA. T1) USING POWER S3 10 GO=8 DO ;ACQUIRE DATA WITH DEC. OFF 11 ST ;go to next memory block 13 LO TO 7 TIMES C ;LOOP TO 7 FOR EACH FREQ. IN FL LIST IN 7 15 RF N.001 RF F.001 16 WR N AI 17 EM 18 FT 19 PK 20 WR F IF N 21 IF F ST ;increment to next memory block 22 LO TO 16 TIMES C RF F.001 IF F RE F 23 EXIT ;PROGRAM USES N.00? FOR FIDS, ;and current FQLIST.001 FOR FREQ. LIST. ;A FREQ. LIST MUST BE DEFINED WHICH CONTAINS ONE O2 ;ENTRY FOR EACH DESIRED IRRAD. POINT PLUS ONE OFF-RES. CONTROL ;VALUE FOR O2 WHICH SHOULD BE WITHIN THE SW REGION (E.G. AT ONE ;EDGE OF THE SPECTRUM). THE NUMBER OF FREQ. IN THE LIST MUST BE ;DEFINED by NE parameter, WHICH ALSO DEFINES THE ;NUMBER OF FIDS TO BE STORED. ;NS DEFINES THE NO. OF TRANSIENTS PER CYCLE FOR EACH O2 VALUE
ROESY.au
(2D
ROESY with Z-filter)
DO FL #2 ; DEFINE FREQUENCY LIST ZE 2 D1 S2 O1 P8 D2 S1 O1 P1 PH1 D0 P1 PH2 D2 S3 O1 P3 PH3 3 P4 PH4 D4 LO TO 3 TIMES 4000 P3 PH5 D2 S2 O1 P1 PH6 GO=2 PH7 WR #1 IF #1 IPH1 IN=1 EXIT PH1=A0 A0 A0 A0 A2 A2 A2 A2 A2 A2 A2 A2 A0 A0 A0 A0 A1 A1 A1 A1 A3 A3 A3 A3 A3 A3 A3 A3 A1 A1 A1 A1 PH2=A0 A0 A0 A0 A0 A0 A0 A0 A2 A2 A2 A2 A2 A2 A2 A2 A1 A1 A1 A1 A1 A1 A1 A1 A3 A3 A3 A3 A3 A3 A3 A3 PH3=A0 PH4=A3 PH5=A2 PH6=A0 A2 A1 A3 PH7=R0 R2 R1 R3 R2 R0 R3 R1 ; S1 =OH, S3=5-8H ; S2 = 28H ; P1 - 90 FOR S1 ; P3 - 90 FOR S3 ; P4 10-30 FOR S3 ; LOCK POWER IS S2 REDUCED BY P4/(P4+D4), MUST BE 2000 HZ ; LOCK TIME IS VC*(D4+P4), MUST BE 0.1S-0.3S
ROESYW.au
(2D
ROESY with Z-filter and water suppression)
DO FL #2 ; DEFINE FREQUENCY LIST ZE D1 S2 O1 ;P8 2 D5 P5 LO TO 2 TIMES 2000 D2 S1 O1 P1 PH1 D0 P1 PH2 D2 S3 O1 P3 PH3 3 P4 PH4 D4 LO TO 3 TIMES 4000 P3 PH5 D2 S2 O1 P1 PH6 GO=2 PH7 WR #1 IF #1 IPH1 IN=1 EXIT PH1=A0 A0 A0 A0 A2 A2 A2 A2 A2 A2 A2 A2 A0 A0 A0 A0 A1 A1 A1 A1 A3 A3 A3 A3 A3 A3 A3 A3 A1 A1 A1 A1 PH2=A0 A0 A0 A0 A0 A0 A0 A0 A2 A2 A2 A2 A2 A2 A2 A2 A1 A1 A1 A1 A1 A1 A1 A1 A3 A3 A3 A3 A3 A3 A3 A3 PH3=A0 PH4=A3 PH5=A2 PH6=A0 A2 A1 A3 PH7=R0 R2 R1 R3 R2 R0 R3 R1 ; S1 =OH, S3=5-8H ; S2 = 28H ; P1 - 90 FOR S1 ; P3 - 90 FOR S3 ; P4 10-30 FOR S3 ; LOCK POWER IS S2 REDUCED BY P4/(P4+D4), MUST BE 2000HZ ; LOCK TIME IS VC*(D4+P4), MUST BE 0.1S-0.3S
HOHAHA1d.au
(1D
HOHAHA with CW spinlock for mixing and selective pre-saturation)
DO ZE WR #1 ;WRITE FILE FOR EXPERIMENT WITH DUMMY SATURATION WR #2 ;WRITE FILE FOR EXPERIMENT WITH SIGNAL SATURATION 1 RE #1 FL #3 2 D2 S3 O1 P4 ; SATURATE ( DUMMY) D2 S1 O1 ; HIGH POWER FOR PULSE, O1 FOR OBSERVATION P1 PH1 P3 PH3 GO=2 PH4 WR #1 RE #2 FL #4 3 D2 S3 O1 P4 ; SATURATE SIGNAL D2 S1 O1 ; HIGH POWER FOR PULSE P1 PH1 P3 PH3 GO=3 PH4 WR #2 IN=1 EXIT ;S3 : POWER LEVEL FOR SELECTIVE SATURATION (22H) ;P4 : RELAXATION (PRESATURATION) DELAY (1-5 T1) ;D2 : 1M ;S1 : POWER LEVEL FOR EXITATION AND SPIN-LOCK (0H-6H) ;P1 : 90 deg pulse ( DP=S1 10U) ;P3 : spinlock time (.1 - .3 S) ;NS : 1-8 ;TOTAL SCANS = NE*NS ;DS : 2 or 4 ; FILE #1 : REFERENCE, FILE #2 : HOHAHA ; FREQUENCY LIST MUST CONTAIN PAIR (DUMMY - OBSERVE FREQ.) NS TIMES (PROBABLY NS=1) ; AND PAIR (SIGNAL FREQ. - OBSERVE FREQ.) NS TIMES PH1=A0 A0 A2 A2 A1 A1 A3 A3 PH3=A1 A1 A3 A3 A2 A2 A0 A0 PH4=R0 R0 R2 R2 R1 R1 R3 R3
HOHAHA1m.au
(1D
TOCSY with CW spinlock for mixing and selective pre-saturation)
1 DO ZE 2 WR #1 ;WRITE FILE FOR EXPERIMENT WITH DUMMY SATURATION IF #1 LO TO 2 TIMES C 3 RF #1.001 RF #2.001 4 RE #1 FL #2 5 D2 S3 O1 P4 ; SATURATE D2 S1 O1 ; HIGH POWER FOR PULSE, O1 FOR OBSERVATION P1 PH1 P3 PH3 ;SPINLOCK GO=5 PH4 WR #1 IF #1 IF #2 LO TO 4 TIMES C IN=3 EXIT ;FILE #1 - SPECTRA ;FILE #2 - FREQ LISTS ; EVERY FREQ LIST CONTAINS SATURATION FREQUENCY AND OBSERVE O1 ;S3 : POWER LEVEL FOR SELECTIVE SATURATION (26H-28H) ;P4 : RELAXATION (PRESATURATION) DELAY (1-5 T1) ;D2 : 1M ;S1 : POWER LEVEL FOR EXITATION (0H) ;P1 : 90 deg pulse ( DP=S1, 10U FOR 0H) ;P2 : 180 DEG PULSE (DP=S1, 20U FOR 0H) ;P3 : spinlock time (150 - 600 msec) ;NS : 1-8 ;TOTAL SCANS = NE*NS ;DS : 2 or 4 PH1=A0 A0 A2 A2 A1 A1 A3 A3 PH3=A1 A1 A3 A3 A2 A2 A0 A0 PH4=R0 R0 R2 R2 R1 R1 R3 R3
HMQC.au
(2D
H-1/X correlation via heteronuclear zero and double quantum coherence)
Uses BIRD sequence in inverse mode;
phase sensitive
using TPPI;
with decoupling during acquisition.
A.Bax and S.
Subramanian, J. Magn. Reson. 67, 565-569 (1986)
modified for AM-300
with BSV-3 by Yu. Strelenko, 1992.
II 1 ZE 2 D1 DO ;relaxation delay P1 PH1 ;90 deg H-1 pulse D2 ;1/(2J)XH (P2 PH1) (P4 PH7):D:E ;180 deg H-1 and X pulse D2 P1 PH9 D4 ;recovery delay P3:D:E PH8 ;90 deg X pulse 3 P1 PH1 ;90 deg H-1 pulse 4 D2 ;1/(2J)XH 5 P3:D:E PH3 ;90 deg X pulse D0 ;t1/2 6 P2 PH2 ;180 deg H-1 pulse D0 7 P3:D:E PH4 D2 ;1/(2J)XH refocussing delay 9 GO=2 BB PH5 DO WR #1 IF #1 IPH3 IN=1 EXIT PH1=A0 PH2=A0 PH3=B0 B2 PH4=B0 B0 B2 B2 PH5=R0 R2 R2 R0 PH7=B0 PH8=B0 B0 B0 B0 B2 B2 B2 B2 PH9=A2 ;D1 : 1-5 T1 ;P1,P2 : 90, 180 deg H-1 pulse ;D2 : 1/(2J)XH ;P3,P4 : 90, 180 deg X pulse ;D4 : optimize to give null for protons bound to C-12 ;DS : 2 or 4 PW = 0 ;NS : 4 * n RD = 3 usec ;D0 = 3 usec ;IN : 1 / 4SW(X) =(1/2) DW(X) ;ND0 = 4 ;MC2 = W, REV = N ;SS : read SF at the centre of carbon-13 (X-nucleus) region.
HMQCW.au
(2D
H-1/X correlation via heteronuclear zero and double quantum coherence;
with water suppression)
Uses BIRD sequence in inverse mode;
phase sensitive
using TPPI;
with decoupling during acquisition.
A.Bax and S.
Subramanian, J. Magn. Reson. 67, 565-569 (1986)
modified for AM-300
with BSV-3 by Yu. Strelenko, 1992.
II 1 ZE 2 DO ;relaxation delAy O1 ; H2O OFFSET 11 D5 P5 ; DANTE LO TO 11 TIMES 2000 ; O1 P1 PH1 ;90 deg H-1 pulse D2 ;1/(2J)XH (P2 PH1) (P4 PH7):D:E ;180 deg H-1 and X pulse D2 P1 PH9 D4 ;recovery delay P3:D:E PH8 ;90 deg X pulse 3 P1 PH1 ;90 deg H-1 pulse 4 D2 ;1/(2J)XH 5 P3:D:E PH3 ;90 deg X pulse D0 ;t1/2 6 P2 PH2 ;180 deg H-1 pulse D0 7 P3:D:E PH4 D2 ;1/(2J)XH refocussing delay 9 GO=2 BB PH5 DO WR #1 IF #1 IPH3 IN=1 EXIT PH1=A0 PH2=A0 PH3=B0 B2 PH4=B0 B0 B2 B2 PH5=R0 R2 R2 R0 PH7=B0 PH8=B0 B0 B0 B0 B2 B2 B2 B2 PH9=A2 ;D1 : 1-5 T1 ;P1,P2 : 90, 180 deg H-1 pulse ;D2 : 1/(2J)XH ;P3,P4 : 90, 180 deg X pulse ;D4 : optimize to give null for protons bound to C-12 ;DS : 2 or 4 PW = 0 ;NS : 4 * n RD = 3 usec ;D0 = 3 usec ;IN : 1 / 4SW(X) =(1/2) DW(X) ;ND0 = 4 ;MC2 = W, REV = N ;SS : read SF at the centre of carbon-13 (X-nucleus) region. ;P5 : .5U; D5 : .5M FOR DANTE ;FL : 1-H2O
HMBC.au
(2D
H-1/X correlation via heteronuclear zero and double quantum coherence
optimized for long-range couplings)
Uses BIRD sequence in inverse mode
with low-pass
J-filter to suppress one-bond correlations;
no decoupling during
acquisition.
A.Bax and S. Subramanian, J. Magn. Reson. 67, 565-569
(1986)
INV4LPLRND.au (AMX-400) modified for AM-300 by Yu. Strelenko,
1992.
1 ze 2 d1 DO 3 p1 ph1 d2 p3:d:E ph3 d6 p3:d:E ph4 d0 p2 ph2 d0 p3:d:E ph5 go=2 ph6 WR #1 IF #1 IN=1 exit ph1=A0 ph2=A0 ph3=B0 B0 B2 B2 ph4=B0 B2 B0 B2 B1 B3 B1 B3 ph5=B0 B0 B0 B0 B0 B0 B0 B0 B2 B2 B2 B2 B2 B2 B2 B2 ph6=R0 R2 R0 R2 R1 R3 R1 R3 R2 R0 R2 R0 R3 R1 R3 R1 ;p1 : 90 degree pulse H-1 observer channel [5.4 u] ;p2 : 180 degree transmitter pulse H-1 [10.8 u] ;p3 : 90 degree BSV-3 decoupler C-13 pulse [9.8 u] ;d0 : incremented delay (2D) [3 usec] ;d1 : relaxation delay; 1-5 * T1 [1 s] ;d2 : 1/(2J)XH, one bond coupling, [d2 = 3.4 msec] ;d6 : delay for evolution of long range couplings [50-100 ms] ;in0: 1/(2 * SW(X)) = DW(X) ;nd0: 2 ;NS: 16 * n ;DS: 4 PW = 0, RD = 3 u ;NE = td1: number of experiments ;MC2: P ;SS: read SF at the center of carbon-13 spectrum;
Used for baseline improvement